Theorem in a sentence
Synonym: proposition, formula.
Meaning: A statement that has been proven based on previously established statements; often refers to a principle in mathematics.

(1) A theorem is like a rule in math.
(2) Write down the Pythagorean theorem.
(3) The binomial-theorem is used in algebra.
(4) The binomial-theorem is used in calculus.
(5) The mathematician explicated the theorem.
(6) Factorize by means of the binomial theorem.
(7) The binomial-theorem is used in statistics.
(8) Albini's theorem is a mathematical concept.
(9) The mathematician postulated a new theorem.
(10) The mathematician posits a theorem to prove.
Theorem sentence
(11) The mathematician will derive a new theorem.
(12) The geometer proved the Pythagorean theorem.
(13) The mathematician proved an absolute theorem.
(14) The binomial-theorem is a mathematical concept.
(15) The theorem evinces the proof of the statement.
(16) The mathematician found a new theorem to prove.
(17) The math problem required proof of the theorem.
(18) The THM theorem is a key concept in game theory.
(19) The mathematician provided proof of the theorem.
(20) The mathematician explicitly proved the theorem.
Theorem make sentence
(21) The Borel-Weil theorem is a result in Lie theory.
(22) The binomial-theorem is used to expand binomials.
(23) Bartlett's theorem is widely used in mathematics.
(24) The figure under the equation proved the theorem.
(25) The mathematician was able to refute the theorem.
(26) A theorem is a statement that can be proven true.
(27) The mathematician made a claim for a new theorem.
(28) The mathematician presented proof of the theorem.
(29) The Pythagorean theorem is named after Pythagoras.
(30) Simplify with a simplified version of the theorem.
Sentence of theorem
(31) The binomial-theorem is used in probability theory.
(32) The mathematician used evidence to prove a theorem.
(33) The mathematician proved the theorem about tangents.
(34) Biot's theorem is used to simplify complex circuits.
(35) The applicabilities of this theorem are fundamental.
(36) The mathematician used figures to prove the theorem.
(37) The asinorum theorem is a famous problem in geometry.
(38) Hartigan's theorem is a result in algebraic geometry.
(39) The mathematician's theorem was profound and logical.
(40) The mathematician gave a cogent proof of the theorem.
Theorem meaningful sentence
(41) The mathematician used evidence to prove the theorem.
(42) The mathematical proof gives soundness to the theorem.
(43) Bayes' theorem is a cornerstone of Bayesian inference.
(44) Moser's theorem is a mathematical concept in geometry.
(45) The mathematician used abstraction to prove a theorem.
(46) Mathers' theorem revolutionized the field of calculus.
(47) Thiel's theorem is a mathematical theorem in geometry.
(48) The mathematician's pedantic proof solved the theorem.
(49) The mathematician used a formula to prove his theorem.
(50) The mathematician had a breakthrough in their theorem.
Theorem sentence examples
(51) The abovementioned theorem is fundamental to calculus.
(52) The mathematician proved a theorem about planar graphs.
(53) The binomial-theorem is a powerful tool in mathematics.
(54) The binomial-theorem is used to calculate combinations.
(55) The binomial-theorem is used to calculate permutations.
(56) The cathetus is a component of the Pythagorean theorem.
(57) The theorem was axiomatised to make it easier to prove.
(58) I struggled to understand the proof of the THM theorem.
(59) The THM theorem is often used in optimization problems.
(60) The mathematician used an algorithm to prove a theorem.
Sentence with theorem
(61) The mathematician will compose a proof for the theorem.
(62) The mathematician gave a detailed proof of the theorem.
(63) Memorize up to the fifth theorem for the geometry quiz.
(64) The binomial-theorem is used to solve complex equations.
(65) The binomial-theorem is used to calculate probabilities.
(66) The theorem was proven to be true through demonstrandum.
(67) The THM theorem is a fundamental concept in mathematics.
(68) The THM theorem is a cornerstone of modern cryptography.
(69) The THM theorem is a central idea in information theory.
(70) An equation can be solved using the Pythagorean theorem.
Use theorem in a sentence
(71) The mathematician was able to prove a difficult theorem.
(72) The mathematician provided cogent proof for the theorem.
(73) The mathematician found evidence to support her theorem.
(74) The mathematician was able to bring forth a new theorem.
(75) The Pythagorean theorem is a key concept in trigonometry.
(76) The mathematician used abstractions to prove the theorem.
(77) The mathematician proved a theorem related to hypercubes.
(78) The mathematician's proof was based on an arcane theorem.
(79) The mathematician proved the quadratic against a theorem.
(80) Haseman's theorem is widely used in statistical analysis.
Sentence using theorem
(81) Iwasawa's theorem is a result in algebraic number theory.
(82) The mathematician provided a cogent proof of the theorem.
(83) The mathematician will declare their proof for a theorem.
(84) Pythagoras' theorem is a fundamental concept in geometry.
(85) The four-color theorem is a famous result in graph theory.
(86) The Pythagorean theorem is a simple yet powerful equation.
(87) The mathematician presented a formal proof of the theorem.
(88) The binominal theorem is a fundamental concept in algebra.
(89) Bhaskara's theorem is used to find the area of a triangle.
(90) D'Alembert's theorem is a fundamental result in mechanics.
Theorem example sentence
(91) The binomial-theorem was first introduced by Isaac Newton.
(92) The mathematician used a-proposition to prove his theorem.
(93) Goldberg's theorem is a fundamental result in mathematics.
(94) The apodictic proof of the theorem was finally discovered.
(95) Schwartz's theorem is a fundamental result in mathematics.
(96) The THM theorem is a crucial component of many algorithms.
(97) The mathematician presented a cogent proof of the theorem.
(98) The mathematician used precise logic to prove the theorem.
(99) The factorial of a number is used in the binomial theorem.
(100) The mathematician had a claim over the theorem she proved.
Sentence with word theorem
(101) The student used convexity to prove a theorem in calculus.
(102) I'm still muzzy on the concept of the Pythagorean theorem.
(103) The mathematician proved a theorem about planar embeddings.
(104) Lagrange's theorem is a fundamental result in group theory.
(105) Schnorr's theorem is a fundamental result in number theory.
(106) Bhaskara's work on the Pythagorean theorem was significant.
(107) The mathematician is an adherer of the Pythagorean theorem.
(108) The Chernov theorem is widely used in mathematical physics.
(109) The Haseman theorem is widely used in statistical analysis.
(110) Richter's theorem is a fundamental result in number theory.
Sentence of theorem
(111) The mathematician used substantiation to prove the theorem.
(112) The mathematician made a claim from his proof of a theorem.
(113) The mathematician made a claim from the proof of a theorem.
(114) The mathematician will expound on their proof of a theorem.
(115) The mathematician provided a detailed proof of the theorem.
(116) The mathematician was able to derive a proof for a theorem.
(117) The mathematician explicitly proved the theorem with logic.
(118) The mean value theorem is an important concept in calculus.
(119) The expounder of the theorem was a respected mathematician.
(120) The mathematician proved the theorem about straight angles.
Theorem used in a sentence
(121) The derivation of this theorem is explained in the textbook.
(122) The mathematician used a formulaic law to prove the theorem.
(123) The Borel-Cantelli lemma is a theorem in probability theory.
(124) The Nyquist-Shannon sampling theorem helps prevent aliasing.
(125) The theorem was proven using complex mathematical equations.
(126) The mathematician's theorem was profound and groundbreaking.
(127) The mathematician explicitly proved the theorem using logic.
(128) The mathematician used proofs to substantiate their theorem.
(129) The Pythagorean theorem can only be used in right triangles.
(130) The Pythagorean theorem is a fundamental concept in geometry.
Theorem sentence in English
(131) The mathematician used an oblique section to prove a theorem.
(132) The mathematician was able to derive a proof for the theorem.
(133) The mathematician proved a theorem in propositional calculus.
(134) Bayes' theorem is widely used in machine learning algorithms.
(135) The binomial theorem is a fundamental concept in mathematics.
(136) The binomial-theorem is also known as the binomial expansion.
(137) The binomial-theorem is a fundamental concept in mathematics.
(138) Factorize from the binomial theorem to expand the expression.
(139) The mathematician was blooded by his first published theorem.
(140) The Greek mathematician Pythagoras is famous for his theorem.
(141) The mathematician proved a claim from a mathematical theorem.
(142) The mathematician had to justify their proof for the theorem.
(143) The mathematician made a claim from the proof of his theorem.
(144) The mathematician made a claim over the proof of the theorem.
(145) The math problem requires you to use the Pythagorean theorem.
(146) The denominator of the Pythagorean theorem is the hypotenuse.
(147) The Pythagorean theorem is taught in schools around the world.
(148) The binomial formula can be derived from the binomial theorem.
(149) The mathematician will investigate further to prove a theorem.
(150) The coherence of the mathematical proof validated the theorem.
(151) The mathematician tried to explicate the proof of the theorem.
(152) Bayes' theorem is a fundamental concept in probability theory.
(153) The mathematician presented an aphetical proof of the theorem.
(154) Carnot's theorem is a fundamental principle in thermodynamics.
(155) The three-square theorem is a fundamental concept in geometry.
(156) The THM theorem is a widely studied topic in computer science.
(157) The mathematician will compose a theorem to solve the problem.
(158) The mathematician proved a portion of the theorem using logic.
(159) The mathematician used a logical argument to prove the theorem.
(160) The Pythagorean theorem is a cornerstone of modern mathematics.
(161) The Pythagorean theorem is a cornerstone of Euclidean geometry.
(162) We need to determine the base number for this calculus theorem.
(163) The binomial-theorem is used in many different fields of study.
(164) The algebraical proof was presented to demonstrate the theorem.
(165) Keck's theorem is a mathematical result in functional analysis.
(166) Pappus' theorem is a fundamental result in projective geometry.
(167) Factorize with the binomial theorem to solve certain equations.
(168) The mathematician needs to flesh out the proof for the theorem.
(169) The mathematician used a deductive method to prove his theorem.
(170) The mathematician was sceptical about the proof of the theorem.
(171) The elliptic regularity theorem is used in functional analysis.
(172) The professor spent hours axiomatising the mathematical theorem.
(173) The mathematician used deductive reasoning to prove the theorem.
(174) The Borel fixed point theorem is a result in algebraic geometry.
(175) The Krull theorem is a mathematical concept used in game theory.
(176) The mathematician made a claim on the validity of a new theorem.
(177) The mathematician used a reference theorem to solve the problem.
(178) The mathematician made a claim out of their proof for a theorem.
(179) The mathematician's conjecture was later proven to be a theorem.
(180) To find the hypotenuse, you need to use the Pythagorean theorem.
(181) The Kreis theorem is a fundamental result in algebraic geometry.
(182) The theorem states that every symmetric matrix is diagonalizable.
(183) He was hailed as the co-discoverer of a new mathematical theorem.
(184) The Pythagorean theorem is derived from the Pythagorean equation.
(185) The provability of the theorem was proven using a counterexample.
(186) The mathematician used logical reasoning to disprove the theorem.
(187) The mathematician proved a theorem about hyperboloidal equations.
(188) The Pythagorean theorem is a fundamental concept in trigonometry.
(189) The Pythagorean theorem is often used in plane geometry problems.
(190) The mathematician discovered a new theorem related to tetrahedra.
(191) The mathematician discovered a new theorem related to dodecagons.
(192) The Borel-Weil-Bott theorem is a result in representation theory.
(193) The daedalean theorem was groundbreaking in the field of science.
(194) The apodictic proof of the theorem was elegant in its simplicity.
(195) The Krantz theorem is a fundamental result in algebraic geometry.
(196) The padic interpolation theorem is a powerful result in analysis.
(197) The THM theorem has many applications in physics and engineering.
(198) The THM theorem is a powerful tool for analyzing complex systems.
(199) The mathematician traced close to the proof of a complex theorem.
(200) The mathematician used substantiation to prove a complex theorem.
(201) The mathematician was able to derive the theorem from the axioms.
(202) The mathematician was able to draw out the proof for the theorem.
(203) The derivation of the theorem was used to solve complex problems.
(204) We can factorize this expression by means of the binomial theorem.
(205) The Bayes theorem is a fundamental concept in Bayesian statistics.
(206) Bayes' theorem is a key concept in probabilistic graphical models.
(207) The Pythagorean theorem is often used in navigation and surveying.
(208) The Pythagorean theorem can be applied to a right-angled triangle.
(209) The mathematician's proofness of the theorem was widely acclaimed.
(210) The mathematician proved a theorem about two-dimensional geometry.
(211) The mathematician formulated a theorem to solve a complex problem.
(212) The deducibleness of the theorem was debated among mathematicians.
(213) Lagrange's theorem is a key result in the theory of finite groups.
(214) The Morita equivalence theorem is a concept in algebraic geometry.
(215) The multinomial theorem is a fundamental concept in combinatorics.
(216) The asinorum theorem is also known as the bridge of asses problem.
(217) Birkhoff's theorem is a fundamental result in classical mechanics.
(218) Rosenthal's theorem is a fundamental result in algebraic geometry.
(219) Factorize by using the binomial theorem to expand this expression.
(220) The mathematician used a systematic approach to prove the theorem.
(221) The mathematician needed to substantiate the theorem with a proof.
(222) The mathematician's proof was germane to the mathematical theorem.
(223) The nascent mathematician was working on a groundbreaking theorem.
(224) The spectral theorem states that every matrix can be diagonalized.
(225) The prime number theorem is a fundamental result in number theory.
(226) The mathematician's groundbreaking theorem was proven posthumously.
(227) Students learn about the Pythagorean theorem in their math classes.
(228) The Pythagorean theorem is a foundational principle in mathematics.
(229) The isosceles triangle is a key element in the Pythagorean theorem.
(230) The mathematician's seminal theorem solved a long-standing problem.
(231) The geometer proved the theorem of the sum of angles in a triangle.
(232) The professor hoped to uncover the mathematical theorem thoroughly.
(233) The cathetus is a fundamental component of the Pythagorean theorem.
(234) The mathematician was asked to elaborate on the proof of a theorem.
(235) The mathematician placed the mathematical proof beside the theorem.
(236) The mathematician's debut theorem was widely accepted in the field.
(237) The prime number theorem is a fundamental concept in number theory.
(238) The mathematician used the concept of absurdum to prove his theorem.
(239) Bayes' theorem is based on the principle of conditional probability.
(240) The mathematician relied on objective evidence to prove his theorem.
(241) The Pythagorean theorem can be proven using geometric constructions.
(242) The mathematician used indirect evidence to prove a complex theorem.
(243) The complex mathematical theorem was a sealed book to most students.
(244) The binominal theorem is a powerful tool in algebraic manipulations.
(245) The binominal expression can be expanded using the binomial theorem.
(246) Bayes' theorem is used in finance to model and predict stock prices.
(247) The binomial theorem is named after the mathematician Blaise Pascal.
(248) Muntz's theorem is a mathematical concept used in signal processing.
(249) Napier's theorem is a geometric theorem used in projective geometry.
(250) The minimax theorem is a fundamental concept in optimization theory.
(251) Birkhoff's theorem on cyclic groups is a result in abstract algebra.
(252) We can prove the theorem algebraically using mathematical induction.
(253) Factorize with the rational root theorem to solve certain equations.
(254) The mathematics department will unveil a new theorem at the lecture.
(255) The mathematician was asked to account for the proof of the theorem.
(256) The mathematician solved a swathe of equations to prove the theorem.
(257) The isosceles triangle can be used to prove the Pythagorean theorem.
(258) The mathematician used a formulaic theory to prove a complex theorem.
(259) The Torricelli theorem is a fundamental concept in integral calculus.
(260) The mathematician's theorem aims to clear up the paradox of infinity.
(261) The cosets of a subgroup can be used to prove the Lagrange's theorem.
(262) Euclid's theorem states that there are infinitely many prime numbers.
(263) The mathematician made a statement about a new theorem he discovered.
(264) The mathematician's proof surpassed all previous ones in the theorem.
(265) The expounder of the mathematical theorem was a genius mathematician.
(266) The vertical angle theorem states that vertical angles are congruent.
(267) The derivation of the theorem was proven through mathematical proofs.
(268) Let's factorize this polynomial by means of the rational root theorem.
(269) The binominal theorem is a formula used to expand powers of binomials.
(270) Bayes' theorem is often used in medical diagnosis and decision-making.
(271) The Pythagorean theorem is often used in construction and engineering.
(272) Complex numbers can be raised to a power by using De Moivre's theorem.
(273) The mathematician proved a theorem related to the angles of octahedra.
(274) Lagrange's theorem has applications in cryptography and coding theory.
(275) The ultrafilter theorem is a fundamental result in mathematical logic.
(276) Andrew Wiles is credited as the codiscoverer of Fermat's Last Theorem.
(277) The binomial theorem is a fundamental concept in algebra and calculus.
(278) Mundt's theorem is a mathematical principle used in signal processing.
(279) The length of the cathetus can be found using the Pythagorean theorem.
(280) The diagonal of a triangle can be found using the Pythagorean theorem.
(281) The mathematician strongly proved the theorem using complex equations.
(282) A scalene triangle can be used to demonstrate the Pythagorean theorem.
(283) The teacher used a right angle to demonstrate the Pythagorean theorem.
(284) The geometer proved the Pythagorean theorem, and the class was amazed.
(285) The Pythagorean theorem is a fundamental concept in algebraic geometry.
(286) The Pythagorean theorem is often illustrated using a geometric diagram.
(287) The Bayesian theorem allows us to update our beliefs based on new data.
(288) The Pythagorean theorem is a fundamental concept in Euclidean geometry.
(289) The length of a secant can be calculated using the Pythagorean theorem.
(290) The mathematician was able to derive a theorem from their calculations.
(291) The mathematician was able to refute the theorem with a counterexample.
(292) The key to solving this math problem is to use the Pythagorean theorem.
(293) The mathematician's theorem provoked new discoveries and understanding.
(294) The mathematician vehemently disputed a colleague's proof of a theorem.
(295) The math students were able to construct a proof for a complex theorem.
(296) Albini's theorem of elasticity relates to the deformation of materials.
(297) The radius of a circle can be calculated using the Pythagorean theorem.
(298) Many students struggle with the asinorum theorem in their math classes.
(299) The satisfiability of the theorem was debated among scholars for years.
(300) The Pythagorean theorem is often used in conjunction with trigonometry.
(301) The mathematician proved a theorem about the angles of a parallelepiped.
(302) The mathematician proved a theorem about the properties of a half-space.
(303) The deducibleness of the theorem was questioned by experts in the field.
(304) The ultrafilter compactness theorem is a fundamental result in topology.
(305) The mathematician proved a theorem about the surface area of ellipsoids.
(306) The mathematician's breakthrough theorem solved a long-standing problem.
(307) The sum of the squares of two numbers is called the Pythagorean theorem.
(308) The mathematician's proof contradicts the previous mathematical theorem.
(309) The mathematician was able to prove the theorem using complex equations.
(310) The proof of the theorem was finally discovered after years of research.
(311) The theorem is simple in concept, yet its implications are far-reaching.
(312) The carrect way to solve this problem is to use the Pythagorean theorem.
(313) The Pythagorean theorem is a fundamental principle in Euclidean geometry.
(314) The mathematician postulated a new theorem that revolutionized the field.
(315) The mathematician's theorem postulates towards a new concept in geometry.
(316) The mathematician intends to falsify by way of proving the theorem wrong.
(317) The mathematician put forward amiss a theorem to solve a complex problem.
(318) The deducibleness of the theorem was challenged by a rival mathematician.
(319) Lagrange's theorem is often used to prove other theorems in group theory.
(320) Lagrange's theorem is a fundamental result in the study of finite groups.
(321) The ultrafilter convergence theorem is a powerful tool in measure theory.
(322) Bayes' theorem is used in speech recognition systems to improve accuracy.
(323) The simplices in this theorem are used to prove a geometric relationship.
(324) The mathematician's proof was a fragmentary demonstration of the theorem.
(325) The mathematician's proof was circumscribed by the axioms of the theorem.
(326) The mathematician was able to derive a new theorem from his calculations.
(327) The theorem is widely accepted, so it is taught in every math curriculum.
(328) Bayes' theorem is named after the 18th-century statistician Thomas Bayes.
(329) The geometer proved the theorem, and the class applauded his achievement.
(330) The mathematical proof had me baffle like a theorem waiting to be proven.
(331) The Pythagorean theorem is a powerful tool for solving geometric problems.
(332) The professor asked the student to restate the theorem in their own words.
(333) The mathematician discovered a new theorem related to symmetric functions.
(334) The Pythagorean theorem is a fundamental tool in surveying and navigation.
(335) The magnitude of a vector can be calculated using the Pythagorean theorem.
(336) The virial theorem relates the kinetic and potential energies of a system.
(337) The mathematician discovered a new theorem related to dodecahedral shapes.
(338) The binomial-theorem is used to find coefficients in a binomial expansion.
(339) The solvability of the equation was proven by the mathematician's theorem.
(340) The method of solving this math problem is to use the Pythagorean theorem.
(341) The binomial theorem is a mathematical formula used to expand expressions.
(342) By now, you should have understood the concept of the Pythagorean theorem.
(343) The length of a secant segment can be found using the Pythagorean theorem.
(344) The Pythagorean theorem is often used to solve problems involving trigons.
(345) Axiomatically, the Pythagorean theorem holds true for all right triangles.
(346) The mathematician used a formulaic concept to prove a mathematical theorem.
(347) Bayes' theorem is a cornerstone of Bayesian statistics and decision theory.
(348) The binomial theorem is a fundamental concept in algebra and combinatorics.
(349) The mathematician propounded a theorem that solved a long-standing problem.
(350) The ultrafilter convergence theorem is a key result in functional analysis.
(351) The mathematician used a conjecture as a stalking-horse to prove a theorem.
(352) The decidability of the theorem was debated among mathematicians for years.
(353) The mathematician was able to isolate atop the equation, proving a theorem.
(354) The Pythagorean theorem is a fundamental building block of geometric proofs.
(355) The mathematician proved the theorem about the properties of perpendiculars.
(356) The binomial-theorem is used to calculate the variance of a random variable.
(357) The theorem is provably true and has been proven by multiple mathematicians.
(358) The Pythagorean theorem involves taking the square root of a sum of squares.
(359) The solution to the math problem was found by using the Pythagorean theorem.
(360) The mathematician had to account for the mathematical proofs in the theorem.
(361) The mathematician made a claim as to the validity of a mathematical theorem.
(362) The prime number theorem was first proved by mathematician Pierre de Fermat.
(363) The Pythagorean theorem is used to solve problems involving right triangles.
(364) The professor explained the logical implication of the theorem to the class.
(365) The mathematician used deductive reasoning to prove the Pythagorean theorem.
(366) The Pythagorean theorem is a key component of the Pythagorean triple concept.
(367) We can use the Pythagorean theorem to solve for the length of the hypotenuse.
(368) The neatest way to solve the math problem was to use the Pythagorean theorem.
(369) The ergodic theorem ensures that time averages converge to ensemble averages.
(370) The mathematician used equations to underscore the principles of the theorem.
(371) The prime number theorem states that there are infinitely many prime numbers.
(372) The salient point in the math problem was the use of the Pythagorean theorem.
(373) The theorem is often misunderstood, so it is important to study it carefully.
(374) Cowen's Theorem is a mathematical concept related to the theory of functions.
(375) The deducibility of the theorem was proven through a series of logical steps.
(376) The Fournier theorem is a mathematical concept that I don't quite understand.
(377) Birkhoff's ergodic theorem is a key result in the study of dynamical systems.
(378) Boltzmann's H-theorem shows that entropy always increases in a closed system.
(379) The boundedness of a set can be proven using the Bolzano-Weierstrass theorem.
(380) The Pythagorean theorem involves finding the square root of a sum of squares.
(381) Bayes' theorem is widely used in machine learning and artificial intelligence.
(382) The Pythagorean theorem is one of the most well-known theorems in mathematics.
(383) The provability of the theorem was established by constructing a formal proof.
(384) The Pauli exclusion principle is a consequence of the spin-statistics theorem.
(385) The mathematician discovers a new theorem that solves a long-standing problem.
(386) The mathematician puzzled through to the theorem by solving complex equations.
(387) Lagrange's theorem has applications in the study of symmetry and group theory.
(388) Bayes' theorem is used in spam filters to classify emails as spam or not spam.
(389) The bisectional theorem can be used to prove that two triangles are congruent.
(390) The Abel-Ruffini theorem states that quintics cannot be solved using radicals.
(391) The multinomial theorem is a mathematical formula used to expand multinomials.
(392) The mathematician's theorem outclassed all of the other theorems in the class.
(393) The mathematician's precision in their proofs solved the mathematical theorem.
(394) The technique for solving this math problem is to use the Pythagorean theorem.
(395) Birkhoff's completeness theorem is a fundamental result in mathematical logic.
(396) Copeland's theorem is a mathematical principle used in electrical engineering.
(397) The Pythagorean theorem is a fundamental concept in geometry and trigonometry.
(398) Factorize from the rational roots theorem to find the possible rational roots.
(399) Factorize this polynomial and then use the factor theorem to find the factors.
(400) The two mathematics majors differ off on the most elegant proof for a theorem.
(401) The student tried to impute near the correct theorem for the calculus problem.
(402) The student tried to impute near the correct theorem for the geometry problem.
(403) The mathematician used concentric triangles to demonstrate a geometric theorem.
(404) The mathematician's theorem postulates towards a solution to a complex problem.
(405) The mathematician's theorem revolutionized the field of non-euclidean geometry.
(406) The ergodic theorem is a fundamental result in the theory of dynamical systems.
(407) Blagden's Theorem is a mathematical theorem related to the geometry of circles.
(408) The prime number theorem is one of the most important results in number theory.
(409) The ergodic theorem is a fundamental concept in the study of dynamical systems.
(410) Taniyama's theorem relates modular forms to elliptic curves over finite fields.
(411) The math tutor explained the Pythagorean theorem using a square on graph paper.
(412) The mathematics students were asked to construct a proof for a complex theorem.
(413) The bisectors array is a fundamental component in angle bisector theorem proofs.
(414) The mathematician used mathematical proofs to produce evidence of their theorem.
(415) The mathematician developed a new theorem related to the angles of tetrahedrons.
(416) The algebraic proof provided a logical explanation for the mathematical theorem.
(417) The ergodic theorem guarantees that time averages converge to ensemble averages.
(418) The mathematician used the Pythagorean theorem to find the base of the triangle.
(419) The theorem is often used in computer science, and it helps optimize algorithms.
(420) Albini's theorem of linear programming is a mathematical optimization technique.
(421) The binomial theorem allows us to exponentiate beneath the binomial coefficient.
(422) The mathematician spent years trying to unravel the proof of the famous theorem.
(423) The mathematician presented a rigorous mathematical proof to support his theorem.
(424) The binominal theorem can be used to find specific terms in a binomial expansion.
(425) Bayes' theorem allows us to update our beliefs as new evidence becomes available.
(426) The provability of the theorem was proven using advanced mathematical techniques.
(427) The Torricelli theorem relates the volume of a solid to its cross-sectional area.
(428) The mathematician identified the mathematical theorem by means of rigorous proof.
(429) The Bayesian approach to statistics is based on the principles of Bayes' theorem.
(430) The mathematician revised the proof to prevent misassigning as the wrong theorem.
(431) Neumann's theorem states that every bounded linear operator has a unique adjoint.
(432) Carnot's theorem is based on the assumption that all heat engines are reversible.
(433) The Pythagorean theorem is a fundamental concept in trigonometrical calculations.
(434) Pythagorean theorem is used to find the length of hypotenuses in right triangles.
(435) The padic interpolation theorem is a powerful tool in the study of modular forms.
(436) The mathematician was given a benefit on account of their groundbreaking theorem.
(437) The postulate of the Pythagorean theorem is a fundamental concept in mathematics.
(438) The Pythagorean theorem is named after the ancient Greek mathematician Pythagoras.
(439) The mathematician's theorem provided a new understanding of fourdimensional space.
(440) The binomial theorem can be used to find the coefficients of a binomial expansion.
(441) The mathematician proved the defeasibility of the theorem using complex equations.
(442) The professor challenged the students to construct a formal proof for the theorem.
(443) The Pythagorean theorem is often used to solve problems involving right triangles.
(444) The geometer applied the Pythagorean theorem to find the length of the hypotenuse.
(445) The mathematician proved the existence of a fixed point in a mathematical theorem.
(446) The binomial-theorem is used to calculate the expected value of a random variable.
(447) The bisectional theorem states that a line bisects a segment into two equal parts.
(448) The theorem has been debated for years, but its validity has never been disproven.
(449) The mathematician used the circinate shape as a basis for a new geometric theorem.
(450) The student had to compute the area of the triangle using the Pythagorean theorem.
(451) The acute triangle is used in the Pythagorean theorem to find the length of a side.
(452) Bayes' theorem provides a framework for combining prior beliefs with observed data.
(453) The Pythagorean theorem has been used for centuries to solve mathematical problems.
(454) The provability of a mathematical theorem is essential in determining its validity.
(455) The Pythagorean theorem can be used to determine if a triangle is a right triangle.
(456) The mathematician discovered a new geometric theorem that revolutionized the field.
(457) The mathematician's theorem proved the existence of linearities in complex numbers.
(458) The mathematician's postulate against the validity of the theorem was proven wrong.
(459) The mathematician used a counterproof to demonstrate the validity of their theorem.
(460) The matroid intersection theorem is a fundamental result in the theory of matroids.
(461) The McCluskey theorem is a fundamental result in the theory of algebraic equations.
(462) Factorize this polynomial and then use the remainder theorem to find the remainder.
(463) The quadrant theorem is used in geometry to prove the properties of quadrilaterals.
(464) The Pythagorean theorem involves finding the square root of the sum of two squares.
(465) The axiomatically proven theorem of Pythagoras is still used in modern mathematics.
(466) Bayes' theorem is a fundamental concept in Bayesian statistics and machine learning.
(467) The Pythagorean theorem can be used to find the length of a side in right triangles.
(468) In mathematics, counterexamples can help to illustrate the limitations of a theorem.
(469) Pythagorean triples are sets of three integers that satisfy the Pythagorean theorem.
(470) The Pythagorean theorem is used to find the length of the sides of a right triangle.
(471) The prime number theorem has many applications in cryptography and computer science.
(472) The distance between the two points can be calculated using the Pythagorean theorem.
(473) The standard method for solving this math problem is to use the Pythagorean theorem.
(474) The mathematician's theorem was canonized as a fundamental principle in mathematics.
(475) The postulate of the central limit theorem is a fundamental principle in statistics.
(476) The mathematics students were challenged to construct a proof for a complex theorem.
(477) The binominal theorem can be used to find the coefficients of a polynomial expansion.
(478) Bayesian inference relies on Bayes' theorem to update our beliefs about a hypothesis.
(479) The mathematician's groundbreaking theorem is held in canonization by mathematicians.
(480) Pythagorean theorem is used to calculate the length of a right triangle's hypotenuse.
(481) Bayes' theorem is used in image recognition algorithms to classify objects in images.
(482) The mathematician discovered a new theorem related to bisymmetry in geometric shapes.
(483) To simplify this complex expression, you need to invert through the binomial theorem.
(484) The mathematician's breakthrough theorem solved a long-standing problem in the field.
(485) The theorem is often used in physics, and it helps explain the behavior of particles.
(486) The mathematician proved a theorem using a different method to prove his versatility.
(487) The derivation of this theorem requires a deep understanding of advanced mathematics.
(488) Bayes' theorem is a fundamental principle in Bayesian statistics and machine learning.
(489) The Pythagorean theorem is often used to calculate distances in two-dimensional space.
(490) The collision detection algorithm in this program is based on separating axis theorem.
(491) Lagrange's theorem states that the order of a subgroup divides the order of the group.
(492) The binomial-theorem is used to calculate the standard deviation of a random variable.
(493) The quadratic amidst the geometry problem required the use of the Pythagorean theorem.
(494) Minkowski's theorem is a result in geometry that relates convex bodies to their duals.
(495) The mathematician used a counterproof to demonstrate the flaw in the original theorem.
(496) The existence of infinitely many primalities is a well-known theorem in number theory.
(497) The hypotenuses of non-right triangles cannot be calculated using Pythagorean theorem.
(498) The theorem states that if three points are collinear, then they lie on the same line.
(499) To find the zeros of this function, you need to factorize by using the factor theorem.
(500) The bivalences in this mathematical theorem have significant implications for geometry.
(501) Bayes' theorem provides a way to incorporate prior knowledge into statistical analysis.
(502) Bayes' theorem is named after the Reverend Thomas Bayes, an 18th-century mathematician.
(503) The mathematician calculated the distance diagonal by means of the Pythagorean theorem.
(504) The mathematics students conducted an experiment to test the accuracy of a new theorem.
(505) Bayes' theorem allows us to calculate the probability of an event given prior knowledge.
(506) The ergodic theorem provides a mathematical foundation for the study of complex systems.
(507) The Pythagorean theorem can be used to find the length of the sides of a right triangle.
(508) The derivation of the theorem was complex, but it was necessary to prove the hypothesis.
(509) The angle amongst the chords of the circle was calculated using the chord-chord theorem.
(510) The Pythagorean theorem is essential for understanding the properties of right triangles.
(511) The mathematician used the theorem as a point of reference to solve the complex equation.
(512) Bayes' theorem is used in search engines to rank web pages based on relevance to a query.
(513) The quadrant theorem states that the sum of the angles in a quadrilateral is 360 degrees.
(514) The theorem was proven by the mathematician, and it revolutionized the field of geometry.
(515) The theorem is a cornerstone of calculus, and it is used in many real-world applications.
(516) The mathematician's precision in solving the equation was crucial in proving the theorem.
(517) The mathematician used congruence to prove the theorem, which had been debated for years.
(518) The mathematics students were tasked with constructing out a proof for a complex theorem.
(519) The mathematician proved the theorem that explains how to defend the diagonal in a matrix.
(520) Birkhoff's theorem on the structure of Boolean algebras is a result in mathematical logic.
(521) The theorem is difficult to understand, but it is essential for solving complex equations.
(522) I learned about triangles in geometry class, and I still remember the Pythagorean theorem.
(523) Memorize forward the steps to follow when solving a problem using the Pythagorean theorem.
(524) The vertical distance between the two points was calculated using the Pythagorean theorem.
(525) The derivation of this theorem is essential to the understanding of geometry and topology.
(526) You can factorize by using the rational root theorem to find the roots of this polynomial.
(527) The Pythagorean theorem is based on the relationship between the sides of a right triangle.
(528) The Pythagorean theorem is often used in trigonometry to solve for angles and side lengths.
(529) By applying the rational root theorem, we can factorize by means of finding rational roots.
(530) The binomial-theorem is used to calculate the probability of success in a series of trials.
(531) The binomial-theorem is used to calculate the probability of failure in a series of trials.
(532) The transversality theorem is a fundamental result in the theory of differential equations.
(533) The isomorphism between the two groups was used to prove a famous theorem in number theory.
(534) Fermat's Last Theorem is a famous Diophantine equation that remained unsolved for centuries.
(535) The Pythagorean theorem is often taught in middle school or high school mathematics classes.
(536) Lorentz's theorem states that the total electric charge within a closed surface is constant.
(537) If a mathematical theorem is proven immutable, it will always hold under certain conditions.
(538) The binomial theorem can be used to find the coefficients of a polynomial raised to a power.
(539) The contraposition of the theorem was much easier to understand than the original statement.
(540) The Pythagorean theorem is one of the most well-known and widely used mathematical formulas.
(541) Factorize this polynomial and then use the rational root theorem to find the rational roots.
(542) The Pythagorean theorem can be used to find the length of a missing side in a right triangle.
(543) Pythagorean triples are sets of three positive integers that satisfy the Pythagorean theorem.
(544) The Pythagorean theorem is often used in computer graphics to calculate distances and angles.
(545) The mathematician proved a theorem about the relationship between the angles in tetrahedrons.
(546) Bayes' theorem is used in genetics to calculate the probability of inheriting certain traits.
(547) The wellordering theorem is a key result in the theory of ordinals and transfinite induction.
(548) Factorize this expression and then use the Pythagorean theorem to solve for the missing side.
(549) The math teacher taught us how to find the length of a segment using the Pythagorean theorem.
(550) The Pythagorean theorem is used to determine the length of the hypotenuse in a right triangle.
Theorem meaning
The word "theorem" is a term commonly used in mathematics and logic to refer to a statement or proposition that has been proven or demonstrated to be true through a logical sequence of reasoning. It is an essential concept in these fields, and understanding how to use it correctly in a sentence is crucial for effective communication. Here are some tips on how to use the word "theorem" in various contexts:
1. Definition and Explanation: When introducing the term "theorem" in a sentence, it is important to provide a clear definition or explanation to ensure that the reader or listener understands its meaning. For example: - "A theorem is a mathematical statement that has been proven to be true based on a set of axioms and logical deductions." - "In logic, a theorem is a proposition that can be derived from a set of premises using valid inference rules."
2. Proper Usage: When using the word "theorem" in a sentence, it is crucial to ensure that it is used correctly and in the appropriate context. Here are a few examples: - "Euclid's theorem on the infinitude of prime numbers is a fundamental result in number theory." - "The Pythagorean theorem states that in a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides." - "Fermat's Last Theorem, which remained unsolved for centuries, was finally proven by Andrew Wiles in 1994."
3. Referencing Specific Theorems: If you are discussing a particular theorem, it is essential to provide the necessary context and reference the theorem correctly. Here are a few examples: - "The Central Limit Theorem, a fundamental concept in statistics, states that the sum or average of a large number of independent and identically distributed random variables will be approximately normally distributed." - "Gdel's incompleteness theorems, proved by Kurt Gdel in the 1930s, revolutionized the field of mathematical logic by demonstrating the inherent limitations of formal systems."
4. Connecting Theorems to Examples: To enhance understanding, it can be helpful to provide examples or applications of theorems in real-world or practical contexts. For instance: - "The Binomial Theorem is frequently used in probability theory to expand binomial expressions and calculate probabilities." - "The Fundamental Theorem of Calculus is a powerful tool that allows us to evaluate definite integrals by finding antiderivatives."
5. Comparisons and Contrasts: When discussing multiple theorems or comparing different theorems, it is important to use appropriate language to highlight the similarities or differences. For example: - "Both the Pythagorean theorem and the Law of Cosines are used to calculate the lengths of sides in triangles, but they apply to different types of triangles." - "The Riemann Hypothesis and the Goldbach Conjecture are two famous unsolved problems in number theory, but they involve different mathematical concepts and structures."
In conclusion, the word "theorem" is a fundamental term in mathematics and logic, and using it correctly in a sentence is crucial for effective communication. By following these tips, you can confidently incorporate the word "theorem" into your writing or conversations, ensuring clarity and accuracy in your discussions of mathematical and logical concepts.
The word usage examples above have been gathered from various sources to reflect current and historical usage of the word Theorem. They do not represent the opinions of TranslateEN.com.